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Abstract—A new three degree of freedom 3-DOF manipulator 

with fully decoupled translational motion is proposed in this 

paper. The conceptual design of the proposed manipulator is 

based on the pantograph mechanism which provide the 

decoupling motion. Parallelogram mechanisms are added to the 

pantograph to obtain the fixed orientation of the end-effector in 

XYZ directions. The proposed manipulator not only has the 

same characteristics of parallel manipulators as high stiffness, 

high accuracy and small power consumption, but also has large 

workspace compared to its volume as serial manipulators. Thus, 

the advantages of both parallel and serial manipulators are 

offered in the proposed manipulator. Moreover, it possess 

unique characteristic over decoupled parallel manipulator 

counterparts in terms of workspace to size ratio. Besides, this 

manipulator moves with high speed as the Pantopteron 

manipulator and many-times faster than the other decoupled 

parallel manipulators based on the magnification factor of the 

pantograph mechanism. The mobility, kinematic analysis and 

workspace of the proposed manipulator are studied in details. 

The simulation results are carried out using ADAMS software 

to validate the feasibility of the conceptual design. 

Keywords-decoupled mations; translational maniplatours; 

constant orientation; workspace; pick and place 

I. INTRODUCTION  

Parallel manipulators provide compact structure, high 
stiffness, and lower moving inertia, high load to weight ratio, 
high dynamic performance, and high accuracy [1]. So, it has 
attracted significant attention amongst researchers and 
industry in the past decade. As a result, many industrial 
parallel robots are developed as Delta robot and Tsai robot [2], 
[3]. These robots provide translational motion with constant 
orientation to cover a wide applications as pick-and-place, 
parallel kinematic machines, and medical devices. In contrast, 
parallel manipulators suffer from disadvantages such as the 
small workspace and coupling of kinematics and dynamics. 
Since, such kind of these robots needs a 3-DOF to position the 
end-effector in a specific location. This means one should 
control three actuators to produce just the motion of the end 
effector due to the coupling between the joints. This problem, 
predictably associated with nonlinearity, high coupled 
kinematics, singularities and a complex shaped workspace [4]. 
Hence, the decoupling motion between the robot actuators and 
positioning the end effector with fixed orientation are 

important issues for many industrial applications as pick and 
place operations. In order to solve this problem, in the last few 
years, a large family of decoupled 3-DOF translation parallel 
mechanism was developed to solve such kind problem. 
Gosselin and Kong [5] have presented their patent about 
simple 3-DOF translational parallel robot, with fully-
decoupled input-output equations. Then, many researchers 
proposed series of decoupled 3-DOF translational parallel 
mechanisms, all covered by the above-mentioned patent [6]-
[10]. A new family of decoupled motion called Tripteron was 
presented in details in many works [11]-[14]. Hence, many 
researchers try to solve the proposed problem of coupling 
motion with different structures as the Quadrupteron [15], 
Isoglide4 [16] and Pantopteron [17]. The mechanism of 
Quadrupteron or Isoglide4, which are very similar, consists of 
four identical leg with PRRU type attached to a common 
platform. These robots are a 4-DOF parallel mechanism 
capable of producing the Schönflies motions consist of three 
translations plus one rotation about a given fixed direction. 
Besides, the linear actuators are employed and the 
displacements of three of them are directly proportional to the 
translational displacements of the mobile platform along a 
given Cartesian axis. The Pantopteron manipulator is similar 
to the Tripteron Cartesian parallel manipulator, but due to the 
use of three pantograph linkages, an amplification of the 
actuator displacements is achieved. Therefore, equipped with 
the same actuators, the mobile platform of the Pantopteron 
moves many times faster than that of the Tripteron. This 
amplification is defined by the magnification factor of the 
pantograph linkages. This paper introduces new 3-DOF 
translational manipulator with fully decoupled motion based 
on pantograph mechanism [18]. The advantages of parallel 
and serial manipulator are offered in this manipulator. 
Besides, the proposed manipulator has a unique advantage in 
terms of workspace/size ratio and velocity compared to other 
decoupled parallel manipulators. 

This paper is organized as follows: Section II introduces a 
mechanism description and mobility analysis of the proposed 
manipulator. Then, Section III represents kinematics analysis. 
Section IV presents the workspace determination. Then, the 
system simulation results are carried out by ADAMS software 
in Section V. Finally, the conclusions are presented in Section 
VI. 
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Figure 1.  Kinematic description of the proposed manipulator. 

II. DESCRIPTION AND MOBILITY ANALYSIS OF THE 

MANIPULATOR 

A. Description of the Architecture 

The basic idea behind the proposed translational 
pantograph manipulator can be explained with the known 2D 
pantograph mechanism as shown in Fig. 1(a). When the 
horizontal slider moves certain distance horizontally, the 
extreme point P moves in the same direction the same distance 
multiplied by the magnification factor (a+b)/a. Similarly, 
when the vertical slider moves certain distance vertically, 
point P moves in the opposite direction the same distance 
multiplied by the magnification factor (b/a). Fig. 1(b) shows 
the known 2D pantograph with guiding mechanism. The 
extreme right vertical link represents the end-effector here as 
shown. The guiding mechanism which consists of two 
parallelograms forces the end-effector to move translational 
motion in 2D space without changing its orientation. The 
motion of this end-effector is controlled by the linear motions 
of the two horizontal and vertical sliders with the same rules 
used to control point P in Fig. 1(a). Then, to obtain fixed 
orientation in 3D space, the parallelogram mechanism with for 
universal joints was used to obtain fixed orientation as shown 
in Fig. 1(c). This mechanism consists of four revolute joints 

formed planar parallelogram in X-Y plane and another four 
revolute joints formed planar parallelogram in X-Z plane. The 
axes of the four revolute joints are parallel to each other and 
are orthogonal to those of the four revolute joints in the other 
parallelogram. This arrangement guarantees constant 
parallelism between axes y1 and y2 and axes z1 and z2. When 
the end-effector in this mechanism moves with respect to link 
1, the end-effector achieve constant orientation in X-Y-Z 
directions [19]. Figure 1d shows the proposed manipulator 
after virtually dividing it into two parts by vertical plane for 
the sake of clarity. The steps to create the proposed 
manipulator begins with constructed the 2D pantograph with 
guiding mechanism shown in Figure with dark lines. Then, 
adding vertical joints which intersected with horizontal joints 
to produce universal joints. The three lowest points (P1; P2; 
P3) and the highest point (P4) of these linkages are attached 
to revolute joints having vertical axes as shown in Fig. 1(d). 
The middle lowest joint is attached directly to a horizontal 
slider acting in x-direction, while the remained two lowest 
joints and the highest joint form with other links and joints 
with light gray lines to produce two parallelograms with 
universal joints acting on planes perpendicular to the 
pantograph plane. The purpose of using parallelograms with 
universal joints is maintaining the end-effector link with 
constant orientation in 3D space and facilitate the motion of 
the proposed manipulator between the two planes XY and XZ. 
The Extreme Right (ER) horizontal link of the perpendicular-
type parallelograms is the end-effector of the proposed 
manipulator. The Extreme Left (EL) horizontal link of the 
perpendicular-type parallelograms is fixed to a horizontal 
slider acting in z-direction relative to other vertical slider 
acting in y-direction relative to the ground. The magnification 
factors of the proposed manipulator in x- and y- directions are 
the same as the original 2D pantograph. The magnification 
factor in z-direction is the same as that of y-direction and 
equals b/a. Also the direction of the end-effector motion in z-
direction is opposite to the motion direction of the slider acting 
along z axis. Fig. 2 shows the schematic diagram and CAD 
model of the proposed manipulator. 

 

 
Figure 2.  Schematic representation of the kinematic structure of the 3-

DOF translational manipulator. 

B. Mobility Analysis 

Obtaining the number of degrees of freedom (DOF) is one 
of the most important issue for mechanism analysis, namely, 
the mobility of a mechanism. The general Grübler-Kutzbach 
(GK) criterion is considered as the most famous formula for 
mobility analysis. So, based on GK criterion, the mobility of 
the proposed of the manipulator can calculated as: 



𝐹 = 𝜆 ( 𝑛 − 𝑗 − 1) + ∑𝑓𝑖

𝑗

𝑖=1

=  6(21 − 25 − 1) + 25 =  −5    (1) 

where λ represents the dimension of task space, n is the 
number of links, j is the number of joints, and fi indicates the 
degrees of freedom of joint i. The general GK criterion can 
only calculate the number of DOF of some mechanisms 
without obtaining the type of motion whether it is translational 
or rotational motion. Although the application of Grübler 
formula results in negative value which refers to non-moving 
structure, the movement of the system is a result of unique 
geometry similar to other parallel manipulators such as Delta 
and Tsai manipulators. The unique geometry here is that all 
the vertical axes of the joints are located in two parallel 
vertical planes. Thus, we analyze the system mobility using 
graphical approach. The structure of the proposed manipulator 
is constructed on parallelogram mechanism. The mechanism 
of the planar four-bar parallelogram consists of four bars 
connected end to end by revolute joints. Parallelogram 
mechanism structure enables the end-effector of the 
pantograph to maintain a fixed orientation with respect to an 
input link in 2D space. Then, the parallelogram mechanism 
with for universal joints was used to obtain fixed orientation 
in 3D space [19]. This arrangement of links and joints 
guarantees constant orientation for the proposed manipulator 
in X-Y-Z directions. Based on this concept, the mobility of the 
proposed manipulator can be calculated directly from the 
geometry of the mechanism. Since, the mobility of any spatial 
mechanism can be represent by six components, three 
translations in X, Y, Z directions and three rotations around 
X, Y, Z. So, the guiding planar pantograph in X-Y plan with 
two Parallelogram mechanisms can provide 2 DOF 
(translation on X and Y) with fixed orientation. Similarly to 
the planar pantograph described above, two parallelograms 
with universal joints are added in X-Z plane to fix the 
orientation of the end-effector while permitting translational 
motions in Z directions. As a result, the proposed pantograph 
manipulator has 3-DOF (three translations in X, Y, Z) with 
fixed orientation. 

III. KINEMATIC ANALYSIS 

The pantograph mechanism is characterized by linear 
relation between its input and output. This makes the direct 
and inverse kinematic is easier to implement for the proposed 
manipulator. Referring to the kinematic diagram in Fig. 3, the 
manipulator consists of 2 loops OA’ADF and OBEF. 

A. Forward Kinematic Analysis 

Based on a loop closure equations technique, the following 
two vector-loop equations can be written as follows: 

𝑂𝐹⃑⃑⃑⃑  ⃑ =  𝑂𝐴⃑⃑ ⃑⃑  ⃑ + 𝐴′𝐴⃑⃑ ⃑⃑ ⃑⃑  + 𝐴𝐷⃑⃑ ⃑⃑  ⃑ + 𝐷𝐹⃑⃑ ⃑⃑  ⃑                            (2) 

𝑂𝐹⃑⃑⃑⃑  ⃑ =  𝑂𝐵⃑⃑ ⃑⃑  ⃑ + 𝐵𝐸⃑⃑⃑⃑  ⃑ + 𝐸𝐹⃑⃑⃑⃑  ⃑                                  (3) 

The position of the end effector with respect to the fixed 
frame can be described by a position vector q = [xe, ye, ze]T 
as it possesses only a translational motion. Expressing the 
vector loop equations above in the fixed coordinate frame 
gives two sets of equations. The first loop OA’ADF gives: 

𝑥𝑒 = (cos 𝜃1 + cos 𝜃2)(𝑎 + 𝑏) cos 𝜑                 (4) 

𝑦𝑒 − 𝑦𝑎 = (sin 𝜃1 + sin 𝜃2)(𝑎 + 𝑏)                    (5) 

𝑧𝑒 − 𝑧𝑎 = −(cos 𝜃1 + cos 𝜃2)(𝑎 + 𝑏) sin 𝜑     (6) 

while the second loop; OBEF gives: 

𝑥𝑒 − 𝑥𝑎 = (cos 𝜃1 + cos 𝜃2)𝑏 cos𝜑                     (7) 

𝑦𝑒 = (sin 𝜃1 + sin 𝜃2)𝑏                                         (8) 

𝑧𝑒 = −(cos 𝜃1 + cos 𝜃2)𝑏 sin𝜑                           (9) 

where, 𝜑 is the angle of rotation around y in X-Z plane for the 

whole manipulator. While the angles Ψ , 𝜃1 and 𝜃2  are 

indicated geometrically in the schematic Fig. 3. By dividing 

equations (4) on (7) and obtaining the relation between the 

position of the end-effector and the input actuators in X-

direction that can be simplified to be: 

𝑥𝑒 =
𝑎 + 𝑏

𝑎
𝑥𝑎 = 𝑀𝑥𝑥𝑎                                    (10) 

Similarly, from equations (5), (8) and equations (6) (9) the 
position of the end-effector in Y and Z directions can also 
simplified to: 

𝑦𝑒 =
−𝑏

𝑎
𝑦𝑎 = 𝑀𝑦𝑦𝑎,     𝑧𝑒 =

−𝑏

𝑎
𝑧𝑎 = 𝑀𝑧𝑧𝑎           (11) 

Since, forward kinematics is a mapping from joint 
coordinate space to space of end-effector positions. So, the 
relationship between the end effector movements [xe, ye, ze]T 
and the actuators input [xa, ya, za]T can be expressed in matrix 
form as follow: 

(

𝑥𝑒

𝑦𝑒

𝑧𝑒

) = (

(𝑎 + 𝑏) 𝑎⁄ 0 0
0 −𝑏 𝑎⁄ 0
0 0 −𝑏 𝑎⁄

)(

𝑥𝑎

𝑦𝑎

𝑧𝑎

)        (12) 

where 𝑥𝑒 , 𝑥𝑎  are the position of the end effector and the 
actuator in x-direction respectively. The ratio (a+b/a) is the 
magnification factor 𝑀𝑥  in x-direction. For the actuator in y 

direction 𝑦𝑒 , 𝑦𝑎  are the motion of the end effector and the 
motion of the actuator in y-direction respectively while the 

ratio (b/a) is the magnification factor 𝑀𝑦. The magnification 

factor in z-direction can be estimated as same as in y-direction. 
where 𝑧𝑒 , 𝑧𝑎 are the motion of the end effector and the motion 
of the of the actuator in z-direction respectively. 

B. Inverse kinematic Analysis 

The inverse kinematics problem is defined as finding the 
required values of the actuated joints that correspond to a 
desired position and orientation of the end effector. The 
solution of the inverse kinematic problem is a basic control 
algorithm in robotics. Therefore, the existence of multiple 
solutions to the inverse kinematics problem complicates the 
control algorithm. In contrast with the above system of 
independent equations can be inverted to give the trivial 
solution to the inverse kinematics of the proposed 
manipulator. Though, the inverse kinematic equations can be 
formed easily in matrix form as: 



(

𝑥𝑎

𝑦𝑎

𝑧𝑎

) = (

𝑎 (𝑎 + 𝑏)⁄ 0 0

0 −𝑎 𝑏⁄ 0
0 0 −𝑎 𝑏⁄

)(

𝑥𝑒

𝑦𝑒

𝑧𝑒

)          (13) 

 

C. Velocity Analysis 

In velocity kinematics, the Jacobian matrix J mapping the 

linear relation between the actuator velocity 𝜉̇  and the end 

effector velocity �̇� for a given configuration of the robot. For 
parallel manipulators, there are two Jacobian matrices: 

𝐽𝜉𝜉̇ = 𝐽𝑞�̇�                                      (14) 

where 𝜉̇ = [𝑥�̇� , 𝑦�̇�, 𝑧�̇�]
T is the vector of joint rates, while �̇� =

[𝑥�̇� , 𝑦�̇� , 𝑧�̇�]
T is the vector of the end-effector velocities. So, the 

two Jacobian matrices can be represented as: 

𝐽𝑞 = 𝐼(3×3) ,   𝐽𝜉 = (

(𝑎 + 𝑏) 𝑎⁄ 0 0

0 −𝑏 𝑎⁄ 0
0 0 −𝑏 𝑎⁄

)             (15) 

where 𝐽 = 𝐽𝜉
−1𝐽𝑞 . Then the Jacobian matrix of the proposed 

manipulator is: 

𝐽 = (

𝑎 (𝑎 + 𝑏)⁄ 0 0

0 −𝑎 𝑏⁄ 0
0 0 −𝑎 𝑏⁄

)                          (16) 

IV. WORKSPACE DETERMINATION 

Compared with serial manipulators, parallel manipulators 
have relatively small workspace. Subsequently the workspace 
is one of the most imperative aspects to mirror its working 
capacity, and it is used to determine the shape and volume of 
the workspace for required applications. Since, the structure 
of the proposed manipulator is closed to that of serial 
manipulators, it has high workspace to size ratio comparable 
to that of serial manipulators. So, the proposed manipulator 
has large workspace compared with other decoupled 
manipulators. Then, according to Fig. 3:  

 

 
Figure 3.  Schematic representation of the kinematic structure of the 3-

DOF translational manipulator. 

(𝐴𝐵̅̅ ̅̅ )2 = 2𝑎2(1 − cos𝜓)                             (17) 

(𝐴𝐵̅̅ ̅̅ )2 = 𝑥𝑎
2 + 𝑦𝑎

2                                      (18) 

From equations (17) and (18) the workspace of the 
proposed manipulator in X-Y plane can be calculated as: 

2𝑎2(1 − cos𝜓) = 𝑥𝑎
2 + 𝑦𝑎

2                         (19) 
The boundary of the workspace occurred at 𝜓 = 𝜋. Since, 

the 2D pantograph workspace can be represented by ellipse in 
X-Y plan as shown in Fig. 4 that represent the 2D workspace 
divided to four quarters based on the motion modes of the 

actuators (± x and ± y). The workspace of the 2D pantograph 
with motion (+ x and − y) is found to be the right semi-ellipse 
having the following equation: 

𝑥𝑒
2

(2𝑎𝑀𝑥)2
+

𝑦𝑒
2

(2𝑎𝑀𝑦)
2 = 1    𝑥𝑒 > 0               (20) 

The motion of the manipulator in z can be concluded from 
Fig. 3 while: 

(𝐴𝐵̅̅ ̅̅ )2 = 2𝑎2(1 − cos𝜓) =  𝑥𝑎
2 + 𝑦𝑎

2 + 𝑧𝑎
2         (21) 

From equation (21), the equation of the total workspace 
for the proposed manipulator in X-Y-Z directions can be 
obtained as: 

𝑥𝑎
2 + 𝑦𝑎

2 + 𝑧𝑎
2 = 4𝑎2       𝑥𝑒 > 0                      (22) 

The magnification factor in two axis are equal and less 
than the third axis this give the shape of oblate spheroid. 
Therefore the workspace of semi-ellipsoid can be described 
using equation (23) as shown in Fig. 5: 

𝑥𝑒
2

(2𝑎𝑀𝑥)
2
+

𝑦𝑒
2

(2𝑎𝑀𝑦)
2 +

𝑧𝑒
2

(2𝑎𝑀𝑧)
2
= 1    𝑥𝑒 > 0      (23) 

 
Figure 4.  The workspace and motion modes of the 2D pantograph 

mechanism. 

 
Figure 5.  The total workspace of the proposed manipulator. 

V. SIMULATION 

In this section, ADAMS dynamic simulation software is 
used to validate the decoupling motion and constant 
orientation of the proposed manipulator using ADAMS 
software of the proposed manipulator. A 3D model for the 
manipulator is created using Solidworks software and then 
exported to ADAMS. The position and angular velocity of the 
end effector in X-Y-Z directions are shown in Fig. 6. 

By analysis Fig. 6(a), it is easy to find that, when the 
actuator moved in x-direction, the end-effector moved along 
X-axis in the same direction with constant orientation and 
without any effect on the y and Z motion. Similarly, Fig. 6(b) 
shows the motion in the opposite direction of the end-effector 
along the Y-direction with constant orientation and without 
any coupling with X and Z motions. Finally, the motion curve 
in Z-direction indicate also the motion in the opposite  



direction with the constant orientation and fully decoupled 
between the actuator’s motions as shown in Fig. 6(c).  

VI. CONCLUSIONS 

In this paper, a virtual prototype of a new 3-DOF fully 
decoupled translational manipulator is presented. It can locate 
the end-effector in the desired position with constant 
orientation using only three translational actuators. 
Furthermore, the kinematic analysis shows a fully decoupled 
translation motion in the three orthogonal axes X, Y and Z that 
allow the end-effector to be controlled using a single actuator 
for each axis. Also, the relation between the input 
displacements of the actuators and the output displacements 
of the end-effector is linear. Finally, compared with the 
previously reported decoupled parallel manipulators as 
Isoglide4 or the Quadrupteron, the proposed manipulator 
faster than them by the magnification factor of the pantograph 
mechanism and the same speed as the Pantopteron. Besides, 
the proposed manipulator has large workspace. For future 
work claims, a typical 3 DOF spherical wrist can be added to 
form 6 DOF manipulator where the orientation of the end-
effector here is independent on its position.  
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Figure 6.  Simulation of the proposed manipulator using ADAMS 

software. 


